General Enquiries - 08 6205 6868 Mobile - 0411067777

***OPEN MONDAY to friday, 7:30 to 5pm, 2/29 prestige parade wangara wa***

How much power does my inverter use?

When sizing up a system people often ask how long they will be able to use a particular appliance before running their battery flat. This time will depend not only on what appliance you are using and for how long, but also what other constant loads you have (think about fridges/lights) what charging source you have (generator/solar/alternator etc) and the age of the battery/batteries.

All these variables aside though, let’s run through an example using a common appliance that comes up most days, being a coffee pod machine.

Firstly, we’ll quickly clarify some terms. Watts (W) is the name given to the amount of power an appliance uses and is usually found on the back or underside of an appliance. The amount of power your battery holds, however is usually measured using Amp hours (Ah).

To work out how much power an appliance will draw from your battery we first need to understand the following calculation:

V (Voltage of battery) X A (Amps of current draw) = Power (Watts)

To work out how many amps an appliance draws, we switch this around:

Watts / Volts = Amps

These Amps are the per hour draw of continuous use, so to calculate the amp hours consumed from the battery, we then add in a time based factor as well. This is usually per minute of use for most devices. We convert this to minutes of usage by dividing the above amps by 60 mins then times by the number of minutes of use to get amp hours consumed from the battery.

A small coffee pod machine tends to range between 1300-1400W. Power conversion losses from converting 12v DC battery power to 230v AC mains power in an inverter uses about 10% more power than the actual appliance draws, so expect around a 1540w draw from the battery (1400w x 1.1 = 1540w).

1540w / 12 volts = 128 Amps
128 Amp / 60 mins = 2.13 Amps per minute
2.13 Amps x 1 min use = 2.13 Amp hours consumed from the battery per cup of black coffee.

If you’re more into white coffee, then a milk frother will consume around 540W. Add your 10%, gets you to 594W. Using the same calculation above…

594w / 12 volts = 49.5A
49.5A / 60 mins = 0.825 Amps per minute
0.825 x 2 minutes to heat milk = 1.65 Amp hours consumed from the battery.

2.13 Amps for the black coffee plus 1.65 Amps for the milk = 3.78 Amp hours total

So, for a hot cuppa (with milk), you’re looking at removing approximately 4 Amp hours from your battery. If you have a 100 Amp hour lithium battery (with a recommended draw of 80ah for best longevity), this means you can consume 20 cups before your battery reaches 20%.

BUT…this assumes you are not putting anything back into your battery. A decent 200W solar panel (in good conditions) will add back in about 10-14amps, so unless you are drinking 20 cups in a row, you’ll barely notice the odd cuppa throughout the day.

As a general guide, here’s some typical power draws from your average appliances again using the above calculation:

Caravan microwave (1200W) - 10 minutes of use = 18.3 amp hours.
Toaster (800w) - 3 mins use = 3.6ah
Kettle (2200w) – 3 mins to boil = 10.1ah
Induction cook top (2000w) – 10 mins cooking = 30.5ah
Laptop (80w) – 120 mins of charging (not usage) = 14.6ah
TV (40w) – 120 mins = 7.33ah 

So, what does it use when you aren’t using your inverter?

A good inverter like an AllSpark Pure Sine Wave Inverter will have a very low no-load/idle power draw (0.3-0.6 amps), which means that while your inverter is sitting idle but still turned on, it will not be running your batteries flat.

However, it is worth mentioning that even some well known/premium brands do not always meet this criteria and can consume substantial battery capacity while sitting at idle – as much as 2 amps per hour or over 40 amp hours per day. It is always good practice to switch off your inverter when not in use to avoid any waste and this is where a remote switching panel really comes in handy, especially if your inverter is mounted under a bed or couch or in the front boot.

Finally, remember that you will also have other constant loads on your system, like fridges or lights. This is why a battery monitor is a great addition to any system. A monitor allows you to plan what you can and cannot run based on your current setup and provides a data point for any upgrades you may be considering. Once you’ve set up your constant loads, being able to measure the power draw of your system means you can then work out how long you can run your extra appliances.  

In the end, the amount of power your inverter uses is a direct result of the appliances you are using. Knowing how to calculate the correct size for what you need to run, and the amount of power your appliances draw, means you can have more control over your battery usage. This will give you the confidence that your system can handle the way you travel. 

Catchya Offroad!

Close (esc)

Interested in 12 Volt?

Learn 12 Volt TIPS & TRICKS and take control of the performance of your system!  

Age verification

By clicking enter you are verifying that you are old enough to consume alcohol.


Shopping Cart

Your cart is currently empty.
Shop now